Convergence of an iterative method for solving a class of nonlinear equations
نویسندگان
چکیده
منابع مشابه
AN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS
Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...
متن کاملA new iterative with memory class for solving nonlinear equations
In this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. This class includes three parameters. Therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. Some numerical examples are also presented.
متن کاملA new optimal method of fourth-order convergence for solving nonlinear equations
In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...
متن کاملA Class of Iterative Methods for Solving Nonlinear Projection Equations
A class of globally convergent iterative methods for solving nonlinear projection equations is provided under a continuity condition of the mapping F. When Fis pseudomonotone, a necessary and sufficient condition on the nonemptiness of the solution set is obtained.
متن کاملNew iterative methods with seventh-order convergence for solving nonlinear equations
In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2013
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2013.08.001